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Abstract

Routing within Asynchronous Transfer Mode (ATM) networks has changed since
the introduction of the Private-Network-to-Network Interface (PNNI) protocol by
the ATM Forum. Among the many features of PNNI are the facilities it pro-
vides for scalable and hierarchical network configurations utilizing the concept
of Multiple Peer Groups (MPG). This thesis represents the research conducted us-
ing the KUPNNI simulator supporting MPG for PNNI. Specifically a comparison
is made between on-demand routing and pre-computed routing strategies within
a multiple peer group network context to understand the trade-offs resulting from
caching routes.

We describe a simple route caching strategy and investigate its effect on call
setup times and call success rates, as a function of peer group size, call load, and
pre-computation cost. We then look at the problem of deciding when to initiate a
pre-computation of routes to update the route cache. Different heuristics for de-
termining when to start route cache updates are investigated. Finally, we propose
a new heuristic, based on the number of topology update messages received for
each level of the PNNI hierarchy. We conclude that our ptse count heuristic, when
used in combination with crankback initiated invalidation, is effective in reducing the
average call setup time, while achieving accuracy comparable to on-demand route
computation.
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Chapter 1

Introduction

”Where shall I begin, please your Majesty?” He asked.

”Begin at the beginning,” the King said, very gravely,

”and go on till you come to the end:

then stop.”

As networks grow bigger and more interconnected, user demands for re-

liable, high speed services with Quality-of-Service guarantees increase the con-

straints on the network. One way of attacking this problem is to provide faster

links with increased bandwidth. However, use of effective routing strategies is

another means for coaxing better performance from an already stressed network.

Asynchronous Transfer Mode (ATM) is now widely recognized as an im-

portant networking technology. ATM specifies quality of service (QoS) guarantees

that a network must provide for and manage. In large ATM network clouds, the

Private-Network-to-Network Interface (PNNI) protocol provides the infrastruc-

ture to efficiently manage customer connections with QoS guarantees. The ATM

Forum’s PNNI standard [6] specifies a routing protocol for distributing topology

and load information throughout the network, and a signalling protocol for pro-

cessing and forwarding connection establishment requests from the source.

Quality-of-service routing has the potential to optimize the use of network
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resources, and increase the success rate of accepting new connection requests, by

selecting paths based on existing network load and connection traffic parameters

[17, 23, 7]. However, distributing link load information and computing routes for

new connections can consume considerable bandwidth, memory, and processing

resources [22, 1]. Controlling these overheads in large backbone networks intro-

duces a trade-off between performance and complexity.

1.1 On-Demand Routing

ATM Private Network to Network Interface routing relies on a dynamic link state

based routing protocol that computes routes at the source node based on informa-

tion contained in its topology database. A default model for computing the route is

defined in the ATM Forum PNNI specification [8]. This involves on-demand routing

at every node wherein the following operations occur every time a routing request

is made:

� a graph of nodes and links, representing the network topology, is constructed

and populated with information from the nodes database.

� a Generic Call Admission Control is carried out on this graph based on the

call connection requirements. This process, also called pruning, eliminates all

those links in the graph that cannot support the call requirements.

� Dijkstra’s Single Shortest Path algorithm is run on the pruned graph so as

to find a path from the source node to the destination node. This path min-

imizes a cost metric that is specified in the routing policy for the node and

also satisfies the QoS requirements for the call.

� a Designated Transit List (DTL) is created for the route and transported in

the setup message that then goes out to the next hop.
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1.2 Problem Statement

The problem with this model is that it involves expensive graph manipulations

and link state topology database queries for every call request that comes into

every switch for source routing. There is scope for amortizing the overhead of

route computation over multiple call connection requests, simply by pre-computing

routes, or portions of a route, to destination nodes in the network.

1.3 Pre-Computed Routing

Pre-computed routes are computed and maintained in advance by the network,

independently of subsequent routing requests. This offers better performance in

terms of connection setup time since the node just fetches the correct entry from

the routing table, without the burden of a costly route computation. Neverthe-

less, this method has drawbacks since the performance of pre-computed routes is

bounded by the reliability and accuracy of information stored in the route cache

at the time the route is effectively used. Pre-computation needs to compute routes

that are used often, and in the worst case, routes to all possible destinations. The

efficiency of pre-computing routes is derived primarily from the trade-off between

the number of routes that are computed and the probability of consulting a specific

entry.

When a call connection request arrives at the source node, an appropriate

choice is made from the pre-computed set of routes. A wrong choice would be sig-

nalled by a PNNI crankback event, and on-demand path computation can replace

the unsuccessful cache selection. In this way the pre-computed routes can also be

categorized as cache entries in a cache of previously successful routes.

Given that such a pre-computed routing strategy exists, there also exist several

tradeoffs where the following decisions need to be made:
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� How should the pre-computed route cache be filled ?

� How many routes should be stored in the cache ?

� What is the cost of route cache pre-computation ?

� How should a route be selected from the cache for a given call QoS require-

ment ?

� What is an appropriate response to a cache miss ?

� When is a cache entry invalidated ?

� When and how often should cache updates be made ?

� What is the cache replacement policy ?

The question of pre-computed routes has been addressed by several other

researchers [2, 4, 11, 14, 20]. Most of their work has centered around refining the

cache policy decisions listed above. This has been applied to PNNI networking

in some cases [14]. Most of the pre-computed routing studies have focussed on a

flat, single peer group topology. Only one of the studies make use of the topol-

ogy update mechanism to measure flux within the network [20]. Further, none

of the studies consider the effect of route caching on Multiple Peer Group PNNI

networks.

1.4 Our Solution

Our solution defines a pre-computed route caching policy that closely models the

on-demand routing procedure described above. This is done intentionally and

with the aim of bringing out the improvements due to pre-computed route caching

over on-demand routing, without excessively changing the basic routing method-

ology.
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Our study focuses on Multiple Peer Group (MPG) PNNI topologies. The

concept of peer groups is intended to enable scaling within a PNNI network. Peer

groups are a collection of nodes that are represented as a single logical node with-

in the next higher level of an addressing hierarchy. Aggregated information about

the resources in the nodes and links within the group reaches nodes in other peer

groups by the process of topology aggregation followed by link state flooding. Rout-

ing decisions are made using the aggregated information. As the network dynam-

ics change, the nodes decide if there is significant change in the resources, and if

so, the new set of resources within the peer group are re-aggregated and flooded.

In a pre-computed routing strategy, updating the entries in the route cache

is a way of improving call success. The cache is refreshed by new routes comput-

ed based on newer information present in the link state topology database. We

attempt to discover a correlation between the topology re-aggregation and the pre-

computed route cache updates based on the following intuitive observation:

Whenever there is change in network resources, the set of pre-computed

routes grows stale. The arrival of ’re-aggregated’ topology information

indicates that there is significant change in the network. Hence updat-

ing the cache of pre-computed routes in response to a re-aggregation

event would provide appropriate quality control to the pre-computed

route cache.

Extending this further, we propose a quantitative method for determining

when a set of cached routes need to be updated. By counting the number of new

topology elements that arrive due to significant change and flooding, we have a

measure of network flux. This is in turn used to initiate an update to the pre-

computed route cache.
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1.5 KU PNNI Simulator

We conduct our experimentation on the KUPNNI Simulator, which implements

ATM Forum PNNI specification version 1.0 and UNI 3.0 [13].

The network that is modeled executes in virtual time and the network enti-

ties are abstracted up to but not including actual physical ATM cell transport. Once

a node has decided to send out an AAL5 packet, there is a transfer from virtual to

real time space. The links that transport this message are simulated within the dis-

crete event simulator engine, and the message is transported with the appropriate

virtual time link delay.

The virtual time management within the simulator is very lightweight and

simple in its implementation. This allows for minimal delay in processing events.

However, it should be noted that the simulated network can scale within the con-

straints of the host computer, and the simulation itself is still guaranteed to be

correct, albeit slower than a small scale network.

Furthermore, we use the real code that networks and systems could, and

often do, use. The simulations run on ATM signaling support which is the same

as that used in an off-board signaling architecture (Q.Port)[3]. Because it uses real

system networking code, it does not require the implementation of system code

abstractions into a software simulator as is required in BONeS, OPNET, and other

commonly used simulation packages.

1.6 Organization

This report is divided into five further chapters.

Chapter 2 discusses related work in the area of source initiated routing in

general and pre-computed routing in particular. Chapter 3 describes the imple-

mentation of the pre-computed route cache and the quantitative method to deter-

mine when pre-computed route cache entries should be updated.
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Chapter 4 presents our experimental methodology, the factors influencing

our evaluation, and describes the choices we make regarding these factors. Chap-

ter 5 describes the experiments performed. Each experiment establishes a hypoth-

esis. The performance metrics, the parameters affecting those metrics, and the

methodology are described for each experiment.

Finally Chapter 6 presents the lessons learned and our conclusions. It also

discusses future work that could be carried out with regard to pre-computed route

caching.
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Chapter 2

Related Work

”Would you tell me, please, which way I ought to go from here?

”That depends a good deal on where you want to get to,” said the Cat.

Previous work on pre-computation of routes has mainly focussed on the

caching policy, and performance of the caching algorithm itself. There has been re-

search on path caching with respect to storage of routes in efficient data structures,

and considering different policies for updating and replacing the pre-computed

routes.

Apostolopoulos et al., evaluate the performance and processing overhead of

a specific path pre-computation algorithm [2]. The study adopts a Bellman-Ford

based algorithm for route computation. It evaluates a purely periodic route cache

update scheme. This is done under a variety of traffic and network configurations

[10]. The study presents a detailed cost model of route computation to compare

the overhead of on-demand and pre-computed strategies. While this study looks

at how to improve the performance of the caching mechanism for flat networks,

our study looks at a simple caching policy and how changing its parameters affects

call performance with respect to Multiple Peer Group hierarchical networks.

Another study proposes a set of route pre-computation policies that opti-

mize various criteria, such as connection blocking and setup latency [14]. The
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algorithms try to locate routes that satisfy several QoS requirements through an it-

erative search of pre-computed paths (optimized for hop-count). This is followed,

if necessary, by several on-demand calculations that optimize different additive

QoS parameters, one at a time. This study primarily focuses on PNNI networks

running on single peer group topologies, while our solution focuses on multiple

peer group topologies.

As part of a broader study of QoS routing, Ma et al., evaluate a class-based

scheme that pre-computes a set of routes for different bandwidth classes [19]. The

evaluation compares the performance of several algorithms for class-based path

computation to on-demand computation. This approach is similar to our method

of quantizing QoS constraints into equivalence classes. Guillen et al. have pro-

posed only to pre-compute and maintain frequently used routes (equivalent to the

caching principle) [11]. But they do not consider how to update the cached routes.

Peyravian et al., introduce a policy that invalidates cache entries based on

the number of link-state updates that have arrived for links in the pre-computed

route [20]. The proposed algorithms also check the current link-state when select-

ing a path from the cache and allow re-computation when the cached paths are

not suitable. We use a similar method to determine network flux, but while they

invalidate the cache entries, we use the information to initiate route cache updates.

The remaining studies consider different ways to pre-compute paths for

multiple destination nodes and connection QoS requirements. The work by Guerin

et al., proposes a Dijkstra-based algorithm that computes minimum-hop paths for

different bandwidth classes [10]. We use a modified version of this algorithm for

pre-computing the route cache entries, by using equivalence classes of available

bandwidth.

Another algorithm, introduced in Przygienda et al., pre-computes a set of

external routes to all destinations such that no other route has both higher bot-

tleneck bandwidth and smaller hop-count [4]. The Bellman-Ford-based algorithm
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used by Guerin et al., has a similar optimization criterion for constructing a next-

hop routing table with multiple routing entries for each destination [10]. We also

optimize the pre-computed routes based on the hop-count, and use the optimized

list of routes within our cache replacement policy. The emphasis of these last three

studies is on algorithmic issues, such as reducing complexity of cached route com-

putation.

Our solution is unique in that it uses the intuitive result that the arrival

of a topology state packet is an indication of network flux. This is particularly

important given the nature of information flow within a PNNI hierarchy. The link-

state flooding and topology aggregation processes in Multiple Peer Group PNNI

distribute routing information at different rates. This information ages at varying

rates. The dynamics of where the information is generated and where it is used

play an important role in how a route cache policy performs.

We investigate these issues and consider how pre-computation affects per-

formance in Multiple Peer Group PNNI, using call setup time and the call accep-

tance ratio as the metrics of comparison. We also look at route cache update poli-

cies and propose a new heuristic, that reflects most recent link-state information,

based on topology message count and cache entry success.
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Chapter 3

Implementation

”Well, I’ll eat it,” said Alice,

”and if it makes me grow larger, I can reach the key;

and if it makes me grow smaller, I can creep under the door;

so either way I’ll get into the garden,...”

In this chapter, we focus on our implementation of the pre-computed route

caching mechanism. A detailed description of the PNNI protocol, with the sig-

nalling and routing components is available elsewhere [21]. Further, the working

of the KU-PNNI simulator and its implementation of the PNNI protocol are de-

scribed in the KU-PNNI User Manual [13].

3.1 Overview

First we give a brief description of PNNI routing for multiple level hierarchi-

cal topologies. Then, we describe the route caching policy used in our solution.

We intend to bring out the benefits of a pre-computed routing strategy over on-

demand routing. Hence we need to ensure a fair comparison. We retain the routing

methodology used in on-demand routing, and make minimal changes to the actual

route processing invocation within the PNNI router module.
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We describe the way route cache updates occur, and then propose a quan-

titative method for determining when a pre-computed route cache update is re-

quired. Finally, we list the limitations and assumptions in our model.

3.2 The PNNI Routing Protocol

In this section, we focus on the PNNI routing mechanism and present a brief

overview of how it works. More details and a thorough description of PNNI

signalling can be found in the ATM Forum PNNI specifications [6]. In general,

routing in an ATM network can be described as a mechanism that occurs on a call-

by-call basis. To establish an end-to-end connection, a path comprising a sequence

of PNNI-ATM nodes and transmission links has to be selected. The source node

chooses a route based on its view of the network and the available resources. A

setup message is propagated bearing the route inside it, in the form of a Desig-

nated Transit List (DTL). The intermediate nodes decide whether they can support

the call with its request QoS parameters, and if they can, they allocate the required

resources along the path. A set of supporting protocols and algorithms helps to ef-

ficiently perform these activities. The following subsections discuss them in more

detail.

3.2.1 Routing and Path Selection

Path selection is usually implemented as a shortest path optimization problem.

This can be done on-demand for every call, or the overhead of computation can be

amortized over several calls by using some form of route caching, as is described

in this thesis. Since ATM networks provide a guaranteed Quality of Service (QoS),

each shortest path has to be chosen such that QoS constraints are fulfilled. The

constraints can be additive metrics, like the maximum permissible end-to-end de-

lay. On the other hand, they could also be a combined attribute like the maximum
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available bandwidth. The metrics are computed over all the links in the path.

Like other dynamic routing protocols, such as Open Shortest Path First [5],

PNNI uses a protocol to distribute information required for the path selection

process. PNNI nodes exchange messages, called PNNI Topology State Elements

(PTSE), to acquire knowledge about network topology and the state of nodes and

links.

Nodes run a permanent neighbor detection computation. If a node learns

about a new neighbor node it initiates a topology database synchronization in or-

der to achieve a common view within a selected group of nodes, called the peer

group (see Section 3.2.2). Then, a flooding process is started which distributes

topology information. In case of network failures, nodes are able to recover and,

given the physical paths, to remain aware of connectivity to other nodes using the

mechanisms described above. Hence, nodes can be automatically removed from

or inserted into the network.

In contrast to routing protocols used in the Internet, PNNI routes connec-

tions through the network based on source routing; the source node selects a path.

However, taking scalability into account, a PNNI node determines only a hierar-

chically complete source route according to the PNNI hierarchy (see Section 3.2.2).

A hierarchically complete source route contains a sequence of nodes, be it switch-

ing systems or logical nodes representing a collection of switching systems in a

higher level abstraction of the hierarchy.

The accuracy of the route computed at the source depends on the accuracy

of the information in the topology database. Further, the representation of peer

groups as logical group nodes introduces topology aggregation. While this helps

scalability, it comes at the cost of decreasing accuracy of aggregated information.

With source routing, however, loops in the path can be avoided easily thus increas-

ing routing stability.

During source routing, the node performs Generic Call Admission Control
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(GCAC) to decide whether the call can be supported in the network. Additionally,

during call setup, each ATM switching system along the chosen path applies Con-

nection Admission Control (CAC) to enforce the required QoS on the respective

links. Here, a switching system has to decide whether the new connection can be

accepted or not, depending on the availability of sufficient resources to establish

the connection.

In the case of insufficient resources, the crankback mechanism is initiated to

inform the source node of a bad route. Crankback in combination with alternate

routing is a mechanism to resolve call blocking by clearing the call back to the last

node which has added information to the hierarchically complete source route.

This node has the chance to decide about alternate paths.

3.2.2 Hierarchy Mechanism

PNNI routing strongly relies on a hierarchical network representation. It is de-

rived from clustering mechanisms and topology aggregation methods which are

recursively applied in an arbitrary number of levels. Figure 3.1 shows a three-level

hierarchy as an example.

At the bottom, ATM switching systems (nodes) are grouped together form-

ing a set of peer groups. Since peer group members are identified by a common

peer group identifier, it is the responsibility of the network administrator to assign

nodes to a peer group. At the next level of the hierarchy, the process is repeat-

ed, based on the peer group identifier, thus collecting logical nodes in a higher

level peer group. At this level, logical nodes are connected via logical links be-

ing mapped to virtual connections at the lowest (physical) layer. A peer group is

represented by a peer group leader, darkened nodes in Figure 3.1, that mainly per-

forms topology aggregation and advertisement on behalf of the group members,

as discussed in Section 3.2.3. In the next higher level of the PNNI hierarchy, the

representation of the peer group is called a logical group node.
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In each peer group, protocols for flooding link state information and detect-

ing neighbor nodes are run to ensure connectivity and network state information

update. Moreover, induced by the hierarchy support mechanisms, routing control

channels are setup for information exchange between different nodes at each logi-

cal level of the PNNI hierarchy. They in turn flood the information received from

within their peer group down to their child peer groups.

3.2.3 Topology Aggregation

A node or link is described by topology state parameters, such as available cell rate

or cell loss ratio. To reduce the amount of routing information distributed through-

out the network, a complex process of summarizing and compressing topology

state information is performed at each hierarchical level. This is called topology

aggregation. However, the reduction necessarily induces information loss. Thus,

at higher levels of the network hierarchy, topology aggregation cannot represent

the actual network state with perfect accuracy. This may result in two effects. On

the one hand, calls which are routed according to overly simplified information

may be blocked due to insufficient resources during call setup. On the other hand,

resources may be underutilized if calls are blocked at the source node due to a lack

of available resources being accurately represented to the source node.

3.3 Information Flow and Aging in MPG PNNI

Our main contribution is the way in which we determine when a route cache up-

date is to be carried out. For this we use the intuitive understanding of the quality

of topology state information and its longevity within a MPG PNNI hierarchy.

Consider the three level Multiple Peer Group PNNI topology shown in Fig-

ure 3.1. For any logical level 0 (physical) node, the information within its database

can be categorized into the following based on its quality:
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� Category A: This represents the best, most up-to-date information describing

the resources of this node and all links starting from or terminating in it.

� Category B: This represents the next best quality information which is the

link resource information and nodal information within the node’s own peer

group.

� Category C: This represents lower quality information which is the link and

nodal resource information of other peer groups at the same logical level

(level 0).

� Category D: This represents still worse quality information which is of the

link and node resources at the next higher level of aggregation, which is log-

ical level 1, in this example.

� Category E: Finally this represents the worst quality information which is of

the links and nodes at the highest level of aggregation, logical level 2, in this

example.

This can be extended to network topologies having 4, 5, or a higher number

of levels. It should be noted that as the number of levels increases, the quality

of aggregated information decreases, since the information lost due to topology

aggregation increases.

The PNNI Topology State Elements (PTSE) are associated with th nodes that

create them. They are flooded to other nodes and inserted into topology databases

at each receiving node. Aggregated information from logical group nodes is flood-

ed in their logical level, and flooded down to the children by the peer group leader.

The topology databases are used to compute routes. The aging of the information

elements depends on:

� When it was created by the owner node;
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� The delay experienced by the information element to reach other nodes, which

is variable depending on the network topology and conditions; and

� The threshold limit for determining that there is a significant change in the

resources to warrant a flooding of the information element by the owner.

The different information elements are thus updated at different rates. Cat-

egory A information is updated as soon as there is significant change in the local

link resources. Category B is updated as and when other nodes in this peer group

have significant change in their link and nodal states. Finally, the higher aggre-

gation level information elements (Categories C, D and E) are updated according

to the re-aggregation policy that is followed. If there is an explicit time interval for

re-aggregation, these information elements are updated at that re-aggregation rate.

3.3.1 PTSE Count as a Determinant of Flux

The fact that PTSE’s arrive at a node because of change in the resource availability

in the network can be used as a measure of flux in the network. Keeping a running

count of the number of update PTSEs gives us a quantitative measure of this flux.

In addition, this measure is associated with specific network components and is

available, essentially, for free. It also provides a quantified method which we can

use to initiate route pre-computation for updating the pre-computed route cache.

The use of PTSE count to create a heuristic for determining cache updates

is evaluated in this thesis. Further, it is shown that this measure enables network

performance to reach the levels of on-demand route computation in terms of av-

erage call acceptance, while also benefiting from the reduced average call setup

times associated with pre-computed route cache lookup.
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3.4 Route Caching Policy

The pre-computed route caching strategy is described below in terms of answers

to the questions outlined in Section 1.3. The questions help in describing the prop-

erties of the cache, the policy decisions used to determine its behavior, and the data

structure used in its implementation.

3.4.1 How should the pre-computed route cache be filled ?

We propose to have a cache entry for every unique node in the source node’s

database. This includes all nodes that are within its own peer group and all high-

er level logical nodes to which it is connected. For each of these destinations, we

compute routes that satisfy the Available Cell Rate (AvCR) QoS constraint.

Routes are stored as a binary tree indexed by the destination node address.

Each destination has a route cache entry, which is itself a sorted list of route entries.

Any given route entry has a Designated Transit List to reach the destination node,

and an associated effective bandwidth, which is the maximum bandwidth that the

links connecting the nodes in the DTL can support. The different routes are sorted

based on the number of hops it takes to reach the destination. The route cache data

structure is shown in Figure 3.2.

Understanding the need for a granularity measure in determining equiva-

lence classes of bandwidth, we divide the range of Maximum AvCR to Minimum

AvCR into ’N’ quantized levels, corresponding to bandwidth equivalence classes,

similar to Guerin et al. [10]. For each of these classes, a route is pre-computed for

every destination in the network. The procedure for doing this is as follows:

� A representation of the topology is constructed as a graph of nodes and links

and populated with information from the nodes database.

� A Generic Call Admission Control is carried out on this graph for require-

ments that are constructed depending on each zone. Thus the graph is pruned
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for each equivalence class of bandwidth before the routing algorithm is run.

� Dijkstra’s Single Shortest Path algorithm is run on the pruned graph so as to

find a path from the source node to the destination node. This path mini-

mizes a cost metric that is specified in the routing policy for the node.

� A Designated Transit List is created for the route to be stored in the pre-

computed route cache.

Algorithm 3.1, which fills the route cache, is presented below. It is to be not-

ed that the algorithm chooses to go from a higher bandwidth quantization level to

a lower bandwidth quantization level while pre-computing routes. This does not

affect the routing decision, because the routing algorithm is called independently

for each case. The nature of the network determines which route is available for

the quantized bandwidth that is chosen as the constraint. It could even be that for

certain network topologies, higher bandwidth ranges do not give any routes, or

give very long routes. In fact this is seen in the experiments conducted in Section
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5.3.2.

3.4.2 How many routes should be stored in the cache ?

Pre-computation of routes introduces a tradeoff between the processing overhead

and the quality of the routes that are stored. We can control the size of the pre-

computed cache and study the performance of the network as this size is changed.

This is done via the tunable parameter representing the number of quantization

levels, ’N’. It might be that, depending on the routing policy and the network

topology, there are not enough routes for each of the quantization levels. In the

worst case, if there exist unique routes stored for each quantization level in the

cache, there will be ’N’ routes per destination node.

Thus, depending on the routing policy that is followed, we have

(No. of Nodes) * N possible routes, all of which minimize the cost specified in the

routing policy.

3.4.3 What is the cost of route cache pre-computation ?

Every route cache pre-computation involves some cost. This can be in terms of

CPU cycles consumed and call connection requests missed, to name two. In order

to model the cost of updating the cache, we use the following algorithm:

1. First, we measure the real execution time it takes to update the route cache

on the CPU on which the simulation runs.

2. We introduce a tunable scaling factor by which the measure of real execution

time is multiplied to get the “equivalent” computation time on a real switch.

3. Assuming that the route cache cannot be used during the time it is being

updated, we disable the route cache for a period of virtual time equal to the

scaled computation time.
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Algorithm 3.1 Filling the Pre-Computed Route Cache

Condition: Receipt of route cache update request.
Variable: Number of Quantization Levels (N)

% find range of bandwidths available in
% the topology database
for all links in the topology database

find maximum available bandwidth (max_avcr)
and minimum available bandwidth (min_avcr)

end

% find unique nodes in the topology, other than myself
for all nodes in the topology database

if the node is NOT myself or my peer group leader
add to a list of unique nodes

end

% create quantization levels
for range of bandwidth values [max_avcr min_avcr],

create N Quantization levels, equally spaced,
in decreasing order

end

% main loop
for all unique nodes

% generate route for each quantization level
for each Quantization Level Q[n]

prune all links that cannot
support Q[n] bandwidth

call Dijkstra’s routing algorithm
create destination route to each unique node
calculate effective bandwidth of route

% invalidate cache before replacing
delete cache entry for that destination
store route cache entry for the destination

end
end
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4. Disabling the route cache is carried out by turning on the “busy” flag. All

subsequent routing requests are rejected, and classified as route cache lookup

failures.

5. The cache is re-enabled after the computation time has elapsed, by turning

off the “busy” flag. The newly updated cache is now ready for use.

It is noted by Peyravian et al. that network route caching varies substan-

tially from caching used in other contexts (memory systems, multiprocessors, dis-

tributed systems, network file systems) in the following ways [20]:

1. The penalty of using an outdated cache entry is greater due to the time it

takes for the failure to be discovered.

2. Cache size, which is a constraint in traditional memory system caches, is

not as significant a constraint in caching network routes. This is primarily

because the number of route entries stored in the route cache would be fewer

than say the number of pages or variables in a memory or distributed system.

3. It is easier to determine the validity of a cache entry in memory / multipro-

cessor caches, via a boolean setting of valid / invalid. However, validity of

routes is a much more complex and often impossible decision, which requires

a heuristic approaches that is spread over a considerable time period.

However, in our implementation, the cost-benefit tradeoff is better than in a

traditional cache system, because the savings in network call setup time is obtained

in return for the lower cost of relatively cheap primary memory (DRAM) used in

the CPU cache. This comes at a penalty in terms of decreased quality of the pre-

computed route, as compared to routes computed on-demand. We believe that

we cannot ignore the effect that pre-computation load has with respect to the CPU

cycles consumed. Hence we study the effect of pre-computed computation cost on

our route caching scheme.
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We assume that the pre-computation of routes occurs on a dedicated co-

processor, or via other independent mechanisms. These can create the routes with-

out hindering the call processing activities of the switch. However, the route cache

is not available for use while it is being updated. This is a pessimistic approach to

modeling pre-computation cost, and as such tends to perform worse than any real

implementation would.

However, by the same argument, if the simulations are not affected much

by the changes in the scaling factor or pre-computation cost as defined by this

model, then we can safely assume that a real implementation of the algorithm

would be affected to a lesser degree by pre-computation costs. This implies that

a real implementation should perform better than the simulation results, all other

things being equal.

3.4.4 How should a route be selected from the cache ?

The incoming call connection request has a set of QoS requirements. We map the

required bandwidth of the call to one of the ’N’ quantization levels and determine

if a route is stored for that equivalence class. If there is such a route, we have a

cache hit and that route is selected and the DTL is embedded in the setup message

to the next hop. If there is no route meeting the needs of the call, we have a cache

miss.

In deciding which route cache entry to assign to the requesting call, we

follow a load balancing policy. Thus, we choose that route cache entry that retains

maximum remaining bandwidth. However, this is overridden by the route with

minimum hops. Algorithm 3.2 presents how to choose a route in the caching policy

that we follow.
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3.4.5 What is an appropriate response to a cache miss ?

When we cannot find a route in the pre-computed cache, we decide to undertake

on-demand routing for that call. The result of the on-demand routing is then in-

serted into the route cache so that subsequent calls can make use of the route.

Algorithm 3.2 Choosing a Pre-Computed Route

Condition: Receipt of connection request with
destination and QoS requirement.

if the cache contains path to destination
then

for all candidate routes to the destination
if candidate route effective bandwidth is

less than or equal to request bandwidth
then

if there is more than one route with
same effective bandwidth

then
return candidate route with minimum hop

else
return candidate route

else
do on demand route computation
store newly computed route

with its effective bandwidth
in route cache for that destination

3.4.6 When is a cache entry invalidated ?

When we receive a crankback element in the release message, we know that the call

attempt did not succeed. We take this as an indicator that the cache entry is stale

and that entry is deleted. This method is called the crankback initiated invalidation of

route cache entries. It ensures that the routes that proved to be stale are not used

in the future. This route cache policy can be turned off to study the effect it has on
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call acceptance and call setup times. It should be noted that when a route entry to a

particular destination is invalidated, the next time a call needs to be routed to that

destination, on-demand routing is carried out and the result populated in the route

cache. Thus there is a feedback effect involved: more crankback indications would

induce more on-demand route computations. These on-demand computations use

better quality topology state information, and hence tend to increase the accuracy

of the routes that are computed. This in turn reduces the number of crankbacks.

This mechanism is described in detail in Section 3.5.1.

3.4.7 What is the cache replacement policy ?

Whenever we are trying to replace an existing cache entry with a new one, we as-

sume that the replacement is because of a cache update process. Hence we simply

replace the entry with the new one. However, during replacement of cache entries,

the route is disabled using the mechanism in the cache cost model of Section 3.4.3.

Thus, depending on the scaling factor, the result of our replacement is not available

until the route cache is re-enabled.

3.5 Route Cache Update Heuristics

Determining the need for updating the cache and the accompanying issue of when

to recompute the routes is the problem that we are investigating. We consider the

following heuristics for determining when to update the cache.

3.5.1 Crankback Indicator

When a crankback indication arrives for a path that was pre-computed, we know

that the route is stale, and we delete the route. This allows us to use the freely

available information regarding the failure of a route to discard the outdated route
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entry, which caused the failure in the first place. The next time a route is chosen

to the same destination, the working of the route cache is such that we will not

find a valid route in the cache. Hence we are forced to undertake an on-demand

computation of the route to the destination. It is expected that the new route will

be computed using updated topology state information. The result of this com-

putation is then reinserted back into the route cache. Thus a crankback indication

followed by invalidation of the failed route is a means by which the cache gets

updated with new routes which are based on fresher topology information.

If alternate routing is enabled, then there would be an on-demand route

computation following the crankback indication. This would replace the invalidat-

ed cache entry immediately. However, alternate routing is not yet implemented in

the MPG version of the KUPNNI simulator. When it is, performance should be no

worse, and may even improve. This is a question for future research.

3.5.2 Timer based Method

In this heuristic, we set a timer that will periodically update the cache. This is a

simple heuristic that takes its inspiration from timer based aging of topology state

elements in the PNNI. It is based on the ex cathedra assumption that once the timer

expires, the cache entries have aged sufficiently to force a complete refilling of the

route cache. In this way, the changes that might have occurred in the topology

database are reflected in the routes in the cache. The periodicity with which the

cache is forced to update can be changed by changing the update time. The per-

formance increase comes at the cost of increased route pre-computation overhead.

3.5.3 PTSE Count Method

We propose a new ptse count heuristic that counts the new topology state mes-

sages that arrive at a node and uses that as an indicator for when to recompute the

routes. Any node will have an idea of how many PTSEs to expect after its initial
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convergence. We define this number as the convergence limit. It is calculated by

accounting for:

� One Nodal PTSE for each physical node

� Two Horizontal Link PTSEs for each physical link (one in either direction)

� One Nodal PTSE and one Nodal State PTSE for each Logical Group Node

� Two Horizontal Link PTSEs for each logical link (one in each direction)

When updated PTSEs arrive, the node keeps track of how many new PTSEs

have arrived. There is a tunable PTSE Count heuristic parameter, that is specified

for the experiment. We set it to be the convergence limit. When this update PTSE

count reaches the PTSE Count heuristic parameter value, we initiate a route cache

update. The use of the convergence limit as an indicator of significant change is ar-

bitrary. We could experiment with other values for significant change, by changing

the PTSE Count heuristic parameter value. This is a question for further research.

3.5.4 Combined Heuristics

We try mixing the three heuristics above, in order to be able to study the relative

advantages and disadvantages of using them.

ptse-crankback: As the name suggests, we invalidate entries based on crankback

indication, and use ptse count as a measure of flux to initiate route cache

updates.

timer-crankback: Here, we combine the invalidation by crankback indication with

time based route cache updates.

ptse-timer: In this heuristic, we disregard crankback indication, and update the

route cache based on a periodic timer and the ptse count measure.
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ptse-timer-crankback: Finally, we try a combined heuristic that invalidates based

on crankbacks, and flushes the route cache based on a periodic timer and the

ptse count.

3.6 Limitations of the model

Our model makes several important assumptions and has a few limitations. It is

hoped that future development will overcome these limitations. However, it is also

noted that our results are still valid, though the accuracy with which they depict

real networks is challenged by these limitations. In addition the current limitations

have been introduced conservatively, so improved models should look better, not

worse.

Rechecking quality of the pre-computed route

We do not cross-verify the validity of the pre-computed route entries within the

current topology database, as is carried out in other research studies [20]. Thus we

are foregoing making a further check regarding the suitability of the route cache

entry. However, this is intentional and accounted for in the fact that we are try-

ing to shadow the working of the on-demand algorithm as far as possible. Since

the standard on-demand routing function does not undertake this re-checking,

we choose to do the same when evaluating the performance improvement due

to caching.

Error due to quantization levels

As with any estimate of call bandwidth requests, we divide the available band-

width into quantized levels for pre-computing multiple routes to the destination

nodes. This introduces error since our choice of route tends to have more available
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bandwidth. This is because in our route cache policy, we choose the path that can

support equal or greater bandwidth compared to the call requirements.

However, this can in turn be an attractive side effective of our caching al-

gorithm. By using equivalence classes of bandwidth, we account for any minor

fluctuations in call load. Further, our load balancing scheme helps spread out the

utilization of bandwidth in the network, creating fewer bottleneck links.

Crankback Retries

We set the number of crankback retries to be 0. This prevents alternate routing

from occurring in our model. We do this primarily because alternate routing func-

tionality is not currently supported in the KU-PNNI simulator for Multiple Peer

Groups. It should be noted that, with alternate routing, there can be significant

differences in the call acceptance ratio [21]. However, this is an area of future work

once the functionality is added to the simulator.

Cost of cache updates

We do not account for how cache updates would affect call processing if there is no

dedicated processor doing the pre-computation. In order to do so, we could use

the following method:

� First, we measure the real execution time it takes to undertake filling the

route cache.

� We determine the equivalent idle cycles consumed by the pre-computation.

This is done by measuring the virtual time elapsed before another call con-

nection request arrives.

� We can now determine how many extra cycles the pre-computation process

consumed. This is over the CPU time it would have been able to use if it had

not been pre-empted by the call connection request coming in.
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� Using the condition that pre-computation would occur only when the rout-

ing algorithm is not pre-empted by a call connection request, we could inval-

idate as many cache entries as were filled during the extra cycles.

However, our literature survey shows that most research into route caching

has ignored the full cost of route cache computation. The study by Apostolopoulos

et al. [2] is an exception. Their model is at a much higher degree of complexity,

and has the ability to measure the cost of several elements of the routing process.

This is an area for future work in our simulator.
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Chapter 4

Evaluation

”Contrariwise”, said Tweedledee, ”if it was so, it might be;

and if it were so, it would be, but as it isn’t, it ’ain’t.

That’s logic.”

This chapter presents our experimental methodology, the factors influenc-

ing our evaluation, and the choices we made regarding these factors.

4.1 Verification

To begin with we prove that our model verifies results obtained in other research

studies regarding the benefits of pre-computed route caching [2, 20]. This sets

the stage for validating the new features that are introduced in our solution. We

undertake the following studies:

� In a single peer group, as the network scales, we show that pre-computed

routing, when compared to on-demand routing, is beneficial in reducing the

call setup times without paying too high a price in terms of increased call

rejection.

� In a multiple peer group, we show how changing the peer group size, and

the cache size, affects the performance of pre-computed route caching. This
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is aimed towards finding optimum values for peer group size and cache size

which are then used in the subsequent experiments.

4.2 Performance of Multiple Peer Group PNNI

On the basis of the verification experiments, we look at PNNI networks that are

based on Multiple Peer Group hierarchies. We consider how changing parameters

of the caching policy as well as the grouping of the network affects performance.

We also consider the effect of cache pre-computation cost based on the cost model

described in Section 3.4.3.

4.3 Validation

Finally, we look at the issue of route cache updates, and validate the following

hypotheses:

� timed pre-computed route updates that are synchronized with the process of

re-aggregation show improved performance over any chosen cache update

policy.

� the ptse count based heuristic that we propose is a valid method for deter-

mining when to recompute the cache routes. When used in conjunction

with crankback initiated invalidation, it gives comparable performance to on-

demand route computation.

This represents the validation of our solution, based on the two perfor-

mance metrics of average call setup time, and average call acceptance ratio. The

intent is to show that using the ptse count - crankback invalidation heuristic, we can

achieve the best combination of lowering average call setup time while increasing

the average call acceptance ratio.
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4.4 Evaluation Setup

Our evaluation is based on the KUPNNI Simulator, which implements ATM Fo-

rum UNI 3.0 and the PNNI specification version 1.0 [13]. These specifcations define

the ATM User Network Interface and Private Network-to-Network Interface. The

simulator is an event driven system, that models network nodes, links and traffic

sources using 98% code shared with real off board signalling code [3]. It supports a

virtual time model of the experimental space, and uses it to model link level de-

lays, routing latency, etc. The call traffic model supports several arrival, duration,

and destination selection distribution. The topology, network parameters, traffic

load, and event schedule are specified using an input language, the experiment is

run and the results are printed out.

Now we describe the simulation environment, the performance metrics and

parameters that affect these metrics of interest.

4.5 Simulation Environment

There are several factors that determine the results of a network experiment. Hence

while evaluating the performance of a routing algorithm, we need to be careful in

our choice of the following:

4.5.1 Topology

In general we consider large ATM backbone networks, typically characterized by

an Edge-Core topology, commonly used to set up private ATM networks. This is

created using a topology that has been used in similar studies [21].

Our general Edge Core network has 36 edge nodes and 24 core nodes. The

edge nodes are dual homed to two core nodes. The core nodes themselves are cate-

gorized into large capacity and small capacity nodes to include multi-vendor vari-
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ations in the switch performance. The large capacity nodes are connected to other

high capacity nodes with higher bandwidth links, and the small capacity nodes are

interconnected with lower bandwidth links [21]. For experiments that require scal-

ing, we use another version of the Edge-Core network, and retain the connectivity-

per-node while increasing the size of the network.

For Multiple Peer Group experiments, the motivation is to extend the Edge-

Core format when grouping the physical network into Peer Groups. Hence, we

partition the topology into edge peer groups and core peer groups that connect the

edge peer groups. Further, in keeping with the dual homing scheme, each small

capacity core switch is connected to two large capacity switches in the core peer

group.

As a check on our new heuristic for determining when to update the route

cache, we test our solution on the following variations of network topology:

� 3 level Multiple Peer Group network.

� Cluster network containing 8 nodes per cluster, and 5 such clusters.

� 60 node network divided into 5 peer groups (non edge core).

The topologies of primary interest are sketched in Figures 4.1 and 4.2.

4.5.2 Traffic Sets

In order to demonstrate the benefits of QoS routing, we create increased loads on

parts of the network. This is done by modeling the traffic as follows.

Some of the experiments involve uniform traffic where a node can request

connections to any of the other nodes with uniformly distributed probability. When

uniform traffic is used, the mean request arrival rate (�U ) is the same for all nodes

in the network. This is termed Type U. We also create conditions of non-uniform

traffic by establishing two sets of non-uniform traffic nodes, Type X and Type Y,
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with mean request arrival rates �X and �Y respectively. Table 4.1 lists these prop-

erties.

Node Type Destination Choice Arrival Rate
Type U uniform among 35 other Type U nodes Poisson [�U ]
Type X uniform among 9 other Type X nodes Poisson [�X ]
Type Y uniform among 9 other Type Y nodes Poisson [�Y ]

Table 4.1: Traffic Sets

Nodes of one type can request connections only with nodes of the same

type. The mean request arrival rate can be specified for each type. The peer groups

have different number of Type U, Type X and Type Y nodes and thus form two

distinct categories, named Type I Traffic and Type II Traffic. The peer groups are

appropriately marked with the traffic types in Figure 4.2.

In order to vary the load on the network, we increase the arrival rate of the

calls at the host/UNI interface, which are assumed to follow a Poisson distribution.

In experiments that require fixed arrival rates, the average traffic loads are chosen

such that call acceptance ratios are kept in the 70% -80% range.

4.5.3 Traffic Load Characteristics

A basic dimension of comparison between the different routing architectures is

their behavior under different call loads. To capture the effects of call duration and

requested bandwidth each UNI entity in our network requests a mixture of calls

that correspond to the following applications:

� Low Load Calls: characterized by low bandwidth (64Kbps to 1.5Mbps), and

last for shorter mean durations of 30 seconds.

� Medium Load Calls: characterized by medium bandwidth requirements that
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fluctuate between 1.5Mbps to 3.6 Mbps and last for medium mean durations

45 seconds.

� High Load Calls: need constant high bit rate, from 5Mbps to 15Mbps, and

last for comparatively longer mean periods 60 seconds.

Bandwidth requirements are uniformly distributed between the minimum

and maximum value shown while call duration is exponentially distributed with

the mean shown. This is shown, along with the fraction of calls for each application

in Table 4.2.

Application Bandwidth uniform Call Rate exponential Fraction of Calls
Low 64Kbps - 1.5Mbps 1=� = 1=30s 30%

Medium 1.5Mbps - 3.6Mbps 1=� = 1=45s 30%
High 5Mbps - 15Mbps 1=� = 1=60s 40%

Table 4.2: Traffic Parameters

4.5.4 PNNI Parameters

In order to reduce the effects due to variations in the PNNI parameters, we use a

standard switch configuration which uses the following PNNI specific parameters:

� Aggregation Policy: This represents the scheme by which resource informa-

tion within a peer group is aggregated. We adopt a symmetric star aggre-

gation policy for all our experiments. This policy is simple and scales well

[12]. It does not adversely skew comparison results between on-demand and

pre-computed routing techniques.

� Routing Policy: We study the performance of the pre-computed route caching

by using the WIDEST MINIMUM HOP routing policy. This runs a routing

algorithm that generates a widest minhop path. This is defined as [19]:
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... a path with the minimum hop count among all feasible paths. If

there are several such paths, the one with the maximum reservable

bandwidth is selected. If there are several such paths with the same

bandwidth, one is randomly selected.

It is shown that this routing algorithm gives the best overall performance, as

compared to other multiple criteria algorithms [21].

� Significant Threshold: The parameters for determining significant change for

flooding are set to :

– Proportionality Constant: 25

– Flooding Threshold: 5

� Crankback Retries: It is well known that excessive alternate routing can ac-

tually reduce routing performance in conditions of high load, since traffic

following alternate routes can interfere with minimum hop traffic competing

for the same links [15, 9]. Hence, we choose to set crankback retries to 0. This

way, the nodes in our network are informed of crankback events. However,

they do not do alternate routing after getting crankback.

4.5.5 System Parameters

Ours is a discrete event simulator. It generates random numbers from a single

seed. Thus, if we use the same seed, we should be able to reproduce all the events

in repeated experiments. The use of our virtual time model in simulating link

delays, routing latency, and other processing delays ensures that multiple runs of

an experiment provide strongly similar results.

We do the following to ensure fairness in our simulation studies:

� Change the value of the random number seed: We calculate averages of our

performance metrics for each experiment, by changing the random number
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seed.

� Use a warm up time to allow the system to stabilize: We ignore the first

10% of all calls when computing the results of any experimental run. This

accounts for the traffic to warm up the network. Such calls are not included

when determining the routing performance [16].

4.6 Performance Measures

We now describe the performance metrics and the parameters that affect them.

These are identified as the properties of interest in our experiments.

4.6.1 Call Acceptance

In most circuit switched routing performance studies, the connection success ra-

tio is used as a measure of routing performance. The connection success ratio is

defined as the percentage of connection requests accepted out of the total number

of requests. A parallel measure of call performance is the bandwidth acceptance

ratio. This is defined as the ratio of the sum of bandwidths of connection requests

accepted over the sum of bandwidths of all the connection requests. We gather call

statistics that allow us to calculate both these metrics.

4.6.2 Time Measures

All time measurements within our simulation are based on virtual time duration,

measured within the virtual time model. This represents the time line for events

within the experiment. The timing metrics of concern are:

� Setup time: For call connection requests, this is defined as the time between

the host/UNI sending out a connection setup request until the time the con-

nection established message returns. Compared to routing time, which is the
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time required for undertaking a route computation, setup time is a more com-

prehensive measure, since :

1. Setup time includes routing time within it.

2. Setup time incorporates the link delays resulting from traversing links,

which are chosen by the routing function.

3. Setup times are the more realistic estimates of how much delay a real

user of the network would face.

� Refresh Periods: We conduct experiments that vary the refresh periods for

route cache updates and compare it with re aggregation intervals. For these

purposes, the time measure is expressed in virtual seconds and simulated as

a timer within the virtual time model.

4.6.3 Counting Failure Cause

This is a way of defining if the call was rejected during route computation, within

the first peer group (source peer group), or in a foreign peer group. This helps to

determine if the reason for failure was because of inaccuracy in local updates with-

in a peer group, or inaccuracy of aggregated information from other peer groups.

A call can be rejected due to either of two reasons:

� it is rejected because a feasible path with sufficient resources cannot be found

by a routing algorithm; or

� the call is refused in an intermediate node. This is because during the call

connection period, the resource availability on the selected path has changed

since the time when it was used for making the routing decision. Alternately,

the update delays causes routing to be out of date.

With on-demand routing, either case is possible. However, in the case of

pre-computed paths, if we have a cache hit, we will fail only due to the second
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reason, since there is no routing involved when the call request arrives. However,

if there is a cache miss and we go ahead and try on-demand routing, we can fail

due to the first reason.

In our experimentation, we count each type of call failure with a view to

determining the location of inaccurate information.

4.6.4 Cache Hit/Miss Ratio

We measure the accuracy of our caching scheme by counting the number of times

that a candidate path is successfully found or missed, in the route cache. Express-

ing the ratio of this number with the total number of routing requests gives us the

cache hit/miss ratio.

4.6.5 Cache Update Cost

We measure the cost of doing cache updates. This is done by measuring the time it

takes to fill a route cache in real time. Further, we also measure the size of the route

cache, so as to compare the performance of different route cache update heuristics.
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Chapter 5

Experimental Results

”There’s more evidence to come yet,

please your Majesty,” said the White Rabbit,

jumping up in a great hurry;

”this paper has just been picked up.”

This chapter describes the experiments that were carried out, the results

that were obtained, and the explanation for the behavior of the system on the basis

of the metrics of primary interest, which are:

� Average Setup Time

� Average Bandwidth Acceptance Ratio

� Average Call Acceptance Ratio

The experiments can be classified as: verification, validation, and auxiliary

experiments. These are described in the following sections. We also describe the

statistical analysis conducted on the data obtained from the experiments.
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Verification Experiments

Here, we aim to corroborate assertions made by other researchers, which indicate

lower average call setup times for a pre-computed route caching strategy com-

pared to an on-demand strategy [4, 20]. This improvement in our performance

metric occurs at the expense of decreased call acceptance.

Validation Experiments

We study the problem of determining when to update the pre-computed route

cache. We apply different cache update heuristics and evaluate our hypothesis

that:

Updating the route cache based on a ptse count heuristic with crankback

based invalidation gives better overall performance, when compared to

the other heuristics.

Auxiliary Experiments

We look at the effect of changing different parameters of the route cache, such as

pre-computation cost and cache quantization levels, on call performance in multi-

ple peer group topologies. We also look at how changing peer group size affects

the performance of pre-computed routing.

5.1 Data Analysis

We conduct the following analysis on data obtained from the experiments. Mul-

tiple runs of each experiment were made, using different values for the random
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number seed, to determine the average values of the performance metrics. The

mean value of the samples thus obtained was used for the data analysis.

First, the integrity of the data itself was tested to see if the values obtained

were close enough to the expected values. This was done by building an interval

estimate for the data point obtained using a confidence level of 95 % . For obtaining

the interval estimates, we use the t-distribution which is required whenever the

sample size is 30 or less and the population standard deviation is not known, as is

true in our case. The formula for estimating standard error is:

�̂�x =
�̂p
n

where �̂ is the standard deviation of the sample, and n is the sample size.

Having obtained the standard error, we obtain the interval estimates by the equa-

tions:

�xhigh = �xmean + t � �̂�x

�xlow = �xmean � t � �̂�x

where �xmean is the average value over all the data samples, t is obtained

from standard t-distribution tables for the number of degrees of freedom and the

confidence level that is required (95 % in this case).

To quote from Levin and Rubin [18]:

The probability that we associate with an interval estimate is called the

confidence level. This probability indicates how confident we are that

the interval estimate will include the population mean. The confidence

interval is the range of the estimate we are making.

If we report that we are 95 % confident that the mean of the setup times

for a certain topology will lie between 174 and 183 ms, then the range 174 - 183

is our confidence interval. We will, however, express the confidence interval as

a standard error of 1.5927 where 183.3783 and 174.5356 are the upper and lower

limits of the confidence interval, for a t value of 2.776.

The mean values obtained for on-demand and pre-computation runs are
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tested for statistically significant differences between them. This is done using the

t-test for hypothesis testing of means (small sample size) [18].

5.2 Effect of Topology Scaling

These experiments are carried out on a Single Peer Group network. The topology

follows a basic Edge-Core design, and scaling increases the number of nodes and

links. The average number of connections per node is held constant.

5.2.1 Establishing the Value of Route Caching

Performance Metric

The performance metric used for this experiment is average call setup time for call

connection requests. We also computed the percentage increase in call setup times

for on-demand routing as compared to the pre-computed routing strategy.

Performance Parameters

The number of nodes in the network is increased from 24 to 96. This represents the

scaling in the network topology.

Experimental Design

We subject the experimental network to a light load and consider both on-demand

computation and pre-computed routing strategies. There are no updates to the

route cache, and a single quantization level is used to pre-compute the cache en-

tries. This is a pessimistic choice of cache parameters. We believe that the pre-

computed routing strategy will perform better when there are route cache updates,

and a greater number of quantization levels. Choosing a pessimistic set of cache
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parameters makes it likely that the performance of a real implementation would

be much better.

Hypothesis

As the size of the network increases, we expect that the average call setup time will

also increase, given a uniform choice of destinations in the call load. However, the

average call setup time for the pre-computed strategy would be less than that of

an on-demand strategy for a given network size.

Results
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Figure 5.1: Effect of Topology Scaling on Average Call Setup Times

As seen in Figure 5.1, the results support our hypothesis since:

� as the size of the network increases, average call setup times also increase,

for both routing strategies.
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� pre-computed routing shows lower average call setup time, as compared to

the on-demand routing strategy.

Further, it is observed that the difference in average call setup times for

on-demand and pre-computed routing follows an exponential curve, that fits the

distribution y = n � e
mx, where n = 1:8593 and m = 0:2573, with a correlation

coefficient of R2
= 0:9866.

Node 24 32 40 48 56 64 72 80 88 96
Run1 184.639 206.086 232.884 262.640 290.479 322.914 344.374 381.029 420.682 462.125
Run2 176.233 198.784 228.342 261.646 289.506 325.691 344.714 377.728 419.189 466.908
Run3 178.939 203.077 229.068 261.170 289.063 325.081 344.907 381.186 420.562 463.130
Run4 179.32 202.54 227.141 260.6 297.17 326.044 343.325 377.001 420.519 463.998
Run5 175.655 205.087 228.149 261.893 289.263 324.937 343.722 375.855 415.647 460.541
Average 178.957 203.115 229.117 261.59 291.096 324.933 344.209 378.56 419.32 463.34
Standard deviation 3.561 2.82 2.216 0.767 3.438 1.215 0.669 2.42 2.141 2.373
Variance 12.684 7.951 4.909 0.588 11.823 1.477 0.447 5.857 4.585 5.63
Stdandard Error 1.593 1.261 0.991 0.343 1.538 0.543 0.299 1.082 0.958 1.061
Upper Range 183.378 206.615 231.868 262.542 295.365 326.442 345.038 381.564 421.978 466.286
Lower Range 174.536 199.614 226.367 260.638 286.827 323.425 343.378 375.555 416.661 460.395
% of mean 2.471 1.723 1.201 0.3641 1.466 0.464 0.241 0.794 0.634 0.636

Table 5.1: Effect of Topology Scaling on Average Call Setup Times (On-Demand
Routing)

Table 5.1 shows how analysis is carried out on average call setup time data

for an increasing number of nodes using the on-demand routing strategy. The five

runs of the experiment are conducted. The average, standard deviation and stan-

dard error is computed. Using the Student t-distribution for 4 degrees of freedom,

the 95 % confidence interval has a value for t of 2.776. This is used in calculating

the Upper and Lower range of values. We are then able to compute what is the de-

viation in the mean as a percentage of the population mean. It is seen that for the

95 % confidence interval, the data values lie on average within 0.9993 % (rounded

off to 4 decimal places) of the population mean.

Similar data analysis was carried out on pre-computed routing time data.

The results are summarized in Table 5.2. Here, it is seen that the data values lie

on average within 1.4967 % (rounded off to four decimal places) of the population

mean for the 95 % confidence interval.
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Node 24 32 40 48 56 64 72 80 88 96
Upper Range 160.599 177.665 191.938 204.967 221.183 232.726 232.694 242.689 257.264 272.434
Lower Range 153.204 170.602 188.387 198.956 212.022 223.767 228.004 232.079 253.995 271.395
% of mean 2.356 2.028 0.934 1.488 2.115 1.963 1.018 2.236 0.639 0.191

Table 5.2: Effect of Topology Scaling on Average Call Setup Times (Pre-Computed
Routing)

The improvement in average call setup times between pre-computed rout-

ing and on-demand routing reaches 53% when the number of nodes is 96. Figure

5.2 shows the percentage increase in the average call setup times when a transition

is made from pre-computation to on-demand computation.
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5.2.2 Variation of Bandwidth Acceptance Ratio with Load

Performance Metrics

The bandwidth acceptance ratio is used to measure call success. This metric incor-

porates the fact that the main reason for call rejection within a network is lack of

bandwidth. This is especially true for highly stressed or loaded networks. We also

gather data about the call acceptance ratio for this experiment.

Performance Parameters

In this experiment, the average call load is increased in stages. This is done by de-

creasing the mean inter-arrival time of the call traffic from 5 seconds to 0.5 seconds.

This corresponds to a call arrival of 0.5 calls per second to 2 calls per second.

Experimental Design

We fix the size of the edge-core network topology at 64 nodes, and by providing

a high traffic load, ensure there is appreciable change in the network resources

over relatively short periods of time. We then investigate the change in call ac-

ceptance rate when network size is increased. This is done for on-demand and

pre-computed routing strategies.

Hypothesis

As the load is increased, we expect the average bandwidth acceptance ratio to

decrease irrespective of the routing policy. However, for the pre-computed rout-

ing strategy, there is a more pronounced effect of rapidly changing network state

on the quality of route cache entries which have been computed at the beginning

of the experiment. Hence we expect the average bandwidth acceptance ratio for

pre-computed routing to decrease faster with increasing load, than for on-demand

routing.
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Results

Figure 5.3, shows the variation of call bandwidth acceptance ratio with call load

for both on-demand and pre-computation strategies. It is seen that as the call load

increases, the bandwidth acceptance ratio decreases in both cases. We find that for

a 64 node network, there is a statistically significant change in the average band-

width acceptance ratio between on-demand computation and pre-computed rout-

ing for a call arrival rate of 1.0 calls/seconds or more. At lower call arrival rates,

the average bandwidth acceptance is not statistically significant.
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Figure 5.3: Average Bandwidth Acceptance Ratio with Increasing Load

The average bandwidth acceptance for pre-computed routing decreases at

a faster rate than for on-demand routing. This is because as the network size in-

creases, network flux affects pre-computed routes much more than routes which

are computed by on-demand computation.

We also see in Figure 5.4, that the call acceptance ratio follows almost exactly

the same curve as the bandwidth acceptance ratio (both in value and trend).
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Statistical analysis of average bandwidth acceptance and call acceptance ra-

tio data values was carried out, in a manner similar to that described in Section

5.2. It is seen that the data values lie on average within 1.25 % of the population

mean for the 95 % confidence interval. We do not repeat the listing of data values

obtained and the intermediate results that were calculated.

5.2.3 Conclusion

The results of the verification experiments described in Section 5.2.1, show that the

use of a pre-computed routing strategy significantly decreases average call setup

times as the topology size increases. Section 5.2.2 shows the tradeoff experienced

with using pre-computed routing. We see that the decreased average call setup

time comes at the penalty of a decreased average call acceptance ratio. These re-

sults indicate trends and trade-offs consistent with those observed by other re-

searchers [2, 4, 20].
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5.3 Multiple Peer Group Experiments

We now consider a multiple peer group hierarchical topology, and study the ef-

fect of peer group size, pre-computation bandwidth quantization levels, and pre-

computation cache update costs on the call performance metrics of interest.

5.3.1 Effect of Changing Number of Peer Groups

Performance Metrics

Average bandwidth acceptance ratio and average call setup time are the primary

metrics in this experiment. The secondary metrics are the location of failure and

topology database size.

Performance Parameters

We increase the number of peer groups in a network having a fixed total number

of nodes. This implies decreasing the number of nodes per peer group. In this

manner we can study the effect of changing multiple peer group topology on call

setup time and bandwith acceptance for on-demand and pre-computed routing

strategies.

Experimental Design

We establish a standard edge-core topology and a standard traffic mix. Next we

vary the peer group size, and hence the number of peer groups. Experimentation

is done using both on-demand and pre-computed routing strategies.

It is significant to note that the pre-computed route cache is not updated in

these experiments. This is a pessimistic choice, and we thus tend to experiment

with route cache contents that are worse than will be conceivable when we intro-

duce a cache update method in experiments described later in this section.
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Hypothesis

Increasing the number of peer groups for a fixed total number of nodes leads to in-

creased aggregation for a larger portion of the network. This results in decreased

accuracy of information that is flooded across peer groups, and less accurate infor-

mation to use to compute the routes. This would indicate a decrease in the average

bandwidth acceptance ratio with increasing number of peer groups. Since aggre-

gated information ages fastest, it is expected that there are more failures in foreign

peer groups than within source peer group.

Moreover, as the number of peer groups increases, the average number of

hops in a hierarchically complete route decreases. This should indicate a decrease

in the routing complexity and hence the average call setup times as the number of

peer groups increases.

Primary Results

Figure 5.5 shows that increasing the number of peer groups decreases the average

call setup time for both on-demand and pre-computed routing strategies. Howev-

er, for any given peer group size, pre-computed routing shows lower average call

setup times as compared to on-demand computation. The improvement in call

setup time of pre-computed routing as compared to on-demand computation, is

consistent with earlier, single peer group experiments. For all the peer group sizes

that were studied, the improvement is in excess of 12 % .

Figure 5.6, shows that average bandwidth acceptance ratio first decreases

with increasing number of peer groups, and then starts to increase.

The shape of the curve can be interpreted by looking at the plot of average

database size as a function of increasing number of peer groups. This is shown

in Figure 5.7. The database is the same for both on-demand and pre-computed

routing schemes, since it is a function of the aggregation policy. It is seen that the

database size decreases with increasing number of peer groups and then starts to
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increase. This occurs when the number of peer groups (10 peer groups) is greater

than the number of nodes in each peer group (4 nodes). This change in database

size is because of the change in the amount of information that gets flooded within

the network.

In our experiment, the size of the database is an indication of the quality

of information available to make routing decisions. Since we use the same aggre-

gation policy in all the experiments, a decreasing database size with increasing

number of peer groups indicates a decrease in the number of aggregated PTSEs.

This decreases the quality of information available to compute routes. But when

the number of peer groups exceeds the number of nodes within any peer group,

the components of the database that correspond to aggregated information exceeds

the locally flooded information. Hence the database size shows an increase.
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Figure 5.7: Average Database Size with Peer Group Size

Now we can see why the average bandwidth acceptance ratio follows a
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curve similar to the change in database size. As the amount of information avail-

able for route computation varies, the accuracy of the routes that are computed

also varies in a similar manner.

Figure 5.6 also slows that the average bandwidth acceptance ratio of pre-

computed routes is lower than that for on-demand computed routes. This is in

accordance with the tradeoff experienced with pre-computed route caching in that

the decreased average call setup time is obtained at the cost of decreased band-

width acceptance ratio.

We find that the call acceptance ratio follows almost exactly the same curve

as the bandwidth acceptance ratio (both in value and trend). Hence we do not

present the essentially identical plot for average call acceptance ratio.

We find as part of our results, that the size of the route cache lies in the

moderate range of 500 bytes to 8460 bytes, in our implementation.

Secondary Results

Next we look at the secondary metric of interest: location of call failures. Figure

5.8 plots the case for on-demand computation. We observed that as the number of

peer groups increases:

� for on-demand routing, the number of calls failing at the source node, owing

to to its inability to obtain a route to the destination, decreases;

� of the number of calls that do get routed out of the source node, those that

fail in the source peer group remain essentially the same; and

� the calls that fail in foreign peer groups increases.

These observations can be explained in the following manner. As the num-

ber of peer groups increases, the information available to the source node tends to

indicates that there are resources in the foreign peer group. Thus the source node
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Figure 5.8: Location of Call Failures (On-Demand Routing) with Peer Group Size
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admits the call connection with increased probability as the number of peer groups

increases. However these guesses need not be correct. The quality of these routes

is determined by where they actually fail in the network.

As observed, the routes that are generated by the source node using on-

demand computation fail uniformly within the source peer group as the number

of peer groups increases. This is because the source peer group gets flooded with

updated information about the availability of its resources.

In the case of foreign peer groups, the on-demand route computed by the

source node is based on lower quality information. The quality of this information

decreases with increasing number of peer groups. Hence the number of failures in

foreign peer groups increases.

Figure 5.9 plots the number of failures total and by location versus peer

group size when using a pre-computed routing strategy (without route cache up-

dates). It is seen that:

� for pre-computed routing, the number of calls failing at the source node ow-

ing to its inability to obtain a route to the destination varies only slightly;

� of the number of calls that do get routed out of the source node, those that fail

in the source peer group decreases as the number of peer groups increases;

and

� finally, the calls that fail in foreign peer groups increase as the number of peer

groups increases.

These observations can be explained by remembering that pre-computation

strategy, without cache updates, builds the initial route cache and routes all subse-

quent calls based on this initial route cache. The variation in peer group size only

affects the route cache inasmuch as it changes the number of cache entries in it. The

source node finds routes in the cache with equal probability and as the number of

peer groups increases, the source failed calls remain essentially constant.
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The decrease in the number of calls failing in the source peer group for pre-

computed routing is explained as follows. As the number of peer groups increases,

the degree of network flux within the source peer group decreases. Initially com-

puted route entries in the cache remain valid for a longer period of time. Hence

the failures based on initially computed routes in the cache decrease with an in-

creasing number of peer groups.

Finally, since routes to foreign peer groups are pre-computed on aggregated

information, as the experiment progresses the foreign peer group information ages

at a faster rate and contains less information to begin with. This accounts for the

increase in the number of calls that fail in foreign peer groups, when the number

of peer groups increases.

5.3.2 Effect of Changing Quantization Levels

Performance Metrics

We measure the average bandwidth acceptance ratio for this experiment. We also

measure the average call setup times.

Performance Parameters

Our scheme of pre-computation divides the available bandwidth into ‘N’ different

equivalence classes, where ‘N’ is a tunable parameter. These represent the quanti-

zation levels for which routes are pre-computed. It is expected that the incoming

call requests can be mapped into these levels, and an appropriate route can be ex-

tracted. This is described in greater detail in Section 3.4.1. We let the number of

quantization levels (’N’) vary from 1 to 3.
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Experimental Design

For a standard edge-core topology, subjected to a standard traffic mix, we vary the

quantization level and measure the average call acceptance ratio and the average

call setup times. The use of a standard topology provides a common network to

test, while the use of a standard traffic mix eliminates the effect of variance in load

on the call rejection.

Hypothesis

When the number of quantization levels increases, we have a better set of possi-

ble routes to choose from. A greater number of quantization levels indicates more

bandwidth equivalence classes, for each of which there is a possible route in the

cache. Hence we would get routes that are at a finer granularity, with respect to

the bandwidth that they can accommodate. This provides a way of more accurate-

ly selecting the route that best meets the call requested bandwidth requirement.

Ideally the trend we should expect is a decrease in blocking rate as the number of

quantization levels increases.

Results

As seen in Figure 5.10, the average bandwidth acceptance ratio remains essentially

the same, as the number of quantization levels increases.

The absence of increased call acceptance with a higher value of number

of quantization levels is accounted for in the following way. As the number of

quantization levels increases, it is seen that the average hop length also increases.

Of the possible routes in the network, those corresponding to higher bandwidth

quantization levels (with larger bandwidth requirement) take longer paths. This

is because the pre-computation algorithm recursively chooses from higher band-

width quantization level to lower bandwidth quantization level. The nature of the
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Figure 5.10: Avg. Bandwidth Acceptance with Increasing Call Load for Varying
Quantization Levels

network is such that finding a larger bandwidth route tends to use whatever route

is available after pruning — even those that take a peculiar path that is long.

As a result, there is an increase in the average hop count of the routes. As

the hop count increases, there is greater possibility for the call to get rejected. This

offsets the gain obtained, when using a higher number of quantization levels, of

using better bandwidth selection from among the routes in the cache.

5.3.3 Effect of Pre-Computation Update Cost

The cost of pre-computation is modeled using a safe or pessimistic approximation,

which is described in 3.4.3. The real time for pre-computation of the route cache

is measured, and the cache is disabled for a period of time that is a scaled version

of the real pre-computation time. The scaling factor is tunable and mimics the

computation load on another processor. While the cache is disabled, it cannot be
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consulted for routing calls.

Performance Metrics

The metric of interest is the average number of cache misses. The cache cost model

disables the route cache while it is being updated, and hence the number of cache

misses is the penalty paid due to the cache computation. This metric is chosen

since it emphasizes the worst case scenario, of making the cache unusable while it

is being updated. However, it should be noted that a cache miss is different from

a route failure. When the cache miss occurs, an on-demand computation is carried

out and the route is computed.

Performance Parameters

We look at the case where the pre-computation scaling factor takes values: 0, 1, 3,

5, and 10, for fixed values of number of quantization levels (1), and mean inter-

arrival time of calls (3 seconds). We also study the effect of increasing number of

quantization levels while keeping the scaling factor constant.

Experimental Design

For a standard edge-core topology, subjected to a standard traffic mix, we vary the

scaling factor for pre-computation cache update cost, and measure the number of

cache misses. The use of a standard topology provides a common network to test,

while the use of a standard traffic mix eliminates the effect of variance in load on

the call rejection.

Results

The results plotted in Figure 5.11 , show that as the scaling factor increases, there

is a corresponding increase in the number of cache misses. This is in accordance

with the basic assumption of the simple cost model, since an increase in the scaling
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factor implies greater time that the cache is unusable and thus greater number of

cache misses.
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Figure 5.11: Cache Misses with Increasing Pre-Computation Cost Scaling Factor

Further, we see in Figure 5.12 that as the number of quantization levels in-

creases, there is a linear increase in the number of cache misses. Once again, this

is in accordance with our cost model. An increase in the number of quantization

levels implies a greater number of route entries in the cache and a corresponding

increase in the cache update processing time. This means that the cache is rendered

unusable for longer periods of time and thus the number of cache misses increases.

5.3.4 Conclusion

We see from the above experiments that the effect of increasing the number of

peer groups is an increase in the number of calls failed in foreign peer group-

s. However, the fact that source peer group failed calls decreases, indicates that

pre-computation of route caches is beneficial for routing within the source peer
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Figure 5.12: Cache Misses with Increasing Number of Quantization Levels

group. The average call setup time decreases as the number of peer groups in-

crease. This decrease is greater for pre-computed routing strategy compared to

on-demand routing.

It is observed that increasing the number of quantization levels does not in-

crease the average bandwidth acceptance ratio. Hence the number of quantization

levels is not significant in evaluating pre-computed route caching for the chosen

network.

Finally, we see that even with an overly pessimistic model for the cost of

route cache updates, pre-computation causes only 14 % of cache lookups to fail in

finding a cached route.

66



5.4 Heuristics for Initiating Route Cache Updates

The following experiments consider the problem of “when to update the route

cache”. It was observed in Section 5.3.1 that without route cache updates, pre-

computed routes fail mainly in the foreign peer groups. This is because the infor-

mation about foreign peer groups has lower quality, and ages faster, when com-

pared to source peer group information. In order to improve the performance of

the pre-computed routing strategy, we introduce route cache updates. We look

at different heuristics for initiating a route cache update. It should be noted that

we now have a re-aggregation timer that initiates re-aggregation and flooding of

foreign peer group information. First we study a periodic timer based heuristic, fol-

lowed by a comparison of the other cache update heuristics described in Section

3.5.

5.4.1 Timer Controlled Updates

This experiment is intended to bring out the relationship between re-aggregation

period and timer based updates to the pre-computed route cache.

Performance Metrics

Average bandwidth acceptance ratio and average call setup times are the metrics

of interest in this experiment.

Performance Parameters

Cache updates are carried out at regular intervals to refresh the route cache so that

old routes created using old information can be flushed out and a new set of paths

can be computed and filled. The update timer period determines how often this

process occurs. We vary the period of the cache update timer, so as to incur from 1

to 5 cache updates during the duration of the experiment.
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Experimental Design

We take a standard edge core topology with standard traffic mix. We set the re-

aggregation timer value such that there are 3 re-aggregation events in each peer

group, during the course of the experiment.

It is important to note that the route caching policy now has the property

that when a crankback message arrives for a route that was chosen from the route

cache, that particular route is invalidated. The next time a route is requested to the

invalidated destination, a cache miss occurs, and an on-demand computation is

carried out. The newly computed route is of course reinserted in the route cache.

Hypothesis

Route caching is done in every node that can be the source of a call. It is also

done at every border node, which serves as the ingress node for a transit peer

group. A good measure of the update condition for the route cache is when there

is substantial change in the network resources.

For the transit node, this would be when aggregation occurs. This is be-

cause aggregation defines the time when there is enough change in the network

to cause network wide flooding. At that time, the topology database is refreshed

with information from other peer groups. Hence the cache update performed at

this time would have better information about foreign peer groups.

Further, since most of pre-computed route call failures occur in foreign peer

groups, it is expected that when the route cache update timer is synchronized with

the re-aggregation timer, the overall performance should increase to give lower

average call setup time and higher average call acceptance ratio.

Results

Figure 5.13 shows how the average call setup time changes with increasing value

of route cache update period. It is seen that at a value of 100 seconds, there is a

68



marked decrease in the average call setup time. This is because that value of the

route cache update period is identical to the re-aggregation timer value. The routes

in the cache are recomputed based on the latest information. The resulting increase

in successful establishment of routes picked up from the route cache cause fewer

crankback events. This implies that fewer entries are invalidated and hence there

are fewer invocations of the on-demand computation, resulting in lower average

call setup times.
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Figure 5.13: Average Setup Time with Increasing Cache Update Timer Period

Figure 5.14 shows how the average bandwidth acceptance ratio changes

with increasing value of route cache update period. Once again, it is observed that

the average bandwidth acceptance ratio increases sharply when the route cache

update period is equal to the re-aggregation period. This indicates that our hy-

pothesis is correct and validates the assertion that:

updating the cache of pre-computed routes at the same rate as the re-

aggregation rate would maximize the quality of the pre-computed route
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Figure 5.14: Average Bandwidth Acceptance Ratio with Increasing Cache Update
Timer Period

cache, and decrease average call setup times while increasing average

bandwidth acceptance ratio.

We find that the call acceptance ratio follows almost exactly the same curve

as the bandwidth acceptance ratio, both in value and trend. Hence we do not

present the essentially identical plot for average call acceptance ratio.

5.4.2 Comparison of Heuristics for Updating the Cache

Performance Metrics

In this experiment, average call acceptance ratio, and average call setup times are

the metrics of primary interest. We also need to compare the different heuristics

that we experiment with based on the two primary metrics. For that purpose we

generate a combined metric. We are influenced by the understanding that a lower

value of call setup time is favorable, while a higher value of call acceptance is also
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favorable. Hence we take the call rejection, for which a lower value is favorable,

and multiply it with the call setup time. This give the combined metric using the

following formula:

combined metric = average call rejection ratio � average call setup time

The heuristic with lowest value of the combined metric exhibits the best combina-

tion of lowering average call setup times and increasing average call acceptance

ratio.

Performance Parameters

We conduct the experiment for on-demand routing, as well as pre-computed rout-

ing strategies. We choose the heuristic for determining when to initiate route cache

updates from among the following:

� Crankback initiated invalidation (cbk): here, a crankback indication is used

to invalidate the entry for that destination from the route cache. This is de-

scribed in Section 3.5.1.

� Timer based updates (timer): here the timer value is set to the re-aggregation

value so as to get best performance for timer based updates, as shown in

Section 5.4.1.

� Ptse Count based updates (ptse): here the number of updated PTSE’s for

each level is tracked and a cache update is initiated for the level that reaches

significant change in the PTSE count. The level of significance is set to the

convergence number as described in Section 3.5.3.

� Crankback-Ptse Count (cbkptse): here we try a combination of crankback

initiated invalidation and ptse count based cache updates.
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� Crankback-Timer (cbktimer): here we try a combination of crankback initiat-

ed invalidation and timer based cache updates. Once more, the timer is set

to the value of re-aggregation timer.

� Ptse Count-Timer (ptsetimer): here we try a combination of ptse count based

and timer based update heuristics.

� Ptse Count-Timer-Crankback (ptsetimercbk): here we try a combination of

ptse count based, timer based update heuristics, supplemented by crankback

initiated invalidation.

� None (none): This is the trivial case having no updates what-so-ever and is

used for comparison purposes.

Experimental Design

We take a standard edge core topology with standard traffic mix. The network re-

aggregation timer is given a value that will cause 3 re-aggregation events, during

the simulated duration of the experiment.

Hypothesis

Since PTSE’s are generated by nodes after a “significant change”, the ptse count

for a given node or addressing level, is a good estimator of how much the current

cache contents may differ from the current network state. The use of crankback

initiated invalidation improves the accuracy of future routes.

Timer based cache update policy does not take into consideration the effect

of updated information that occurs due to flooding within the source peer group.

Further, depending on the network conditions, cache updates might occur even

when there is no change in the network resources.

For these reasons, we believe that the heuristic combining two objectives

of cache content relevance and crankback invalidation (Crankback-Ptse Count)
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would perform best in terms of the combined metric of comparison, by increas-

ing the average call acceptance ratio, and simultaneously lowering the average

call setup time.

Results

Figure 5.15, plots the average call setup time for each of the eight policies described

above. It is observed that crankback initiated invalidation alone gives the highest

value of call setup time. Further, introducing timer based updates tends to increase

the average call setup times. This is seen in the increase of 50 ms in call setup value

for Ptse count based updates to the Ptse-Timer based combination. Ptse count

based updates, shows average call setup times that are comparable to the case

where no updates occur. There is only marginal decrease in call setup time when

we add crankback initiated invalidation to the Ptse crankback based updates. The

average call setup time ranges from 315 ms for no updates at all, to 425 ms for

crankback initiated invalidation heuristic.

Figure 5.16, plots the average call acceptance ratio for each of the eight poli-

cies described above. On-demand computation shows best results, and ptse based

updates as a family perform better than no updates. However, when we add

crankback initiated invalidation to the Ptse count method, we see an increase in

the average call acceptance ratio. The average call acceptance ranges from 71 % for

no updates at all, to 83 % for on-demand routing.

Considering the combined metric, Figure 5.17 plots the computed values of

the combined metric (weighted by a factor of 0.01) versus the different heuristics.

The correlation between the observations of average call setup times and average

call rejection ratio was 0.025. This indicates that the two factors, call setup time

and call rejection, are marginally related. When one increases, the other increases

marginally. This makes the product of the two primary metrics a realistic measure

for comparison.
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Figure 5.17: Evaluating Overall Performance of Route Cache Update Heuristics

The ptse count based heuristic performs comparably to the case where there

are no updates. Having no updates gives lower average call setup times, but it also

gives lower average call acceptance ratio. The ptse count based heuristic gives

higher average call setup times than the no updates method, but it has higher

average call acceptance ratios too. The use of timer based update heuristic tends

to increase the combined metric of evaluation.

The heuristic that uses Ptse-Crankback performs better than all other heuris-

tics for the combined metric of comparison. This is because, it exhibits the best

combination of lower average call setup times and higher average call acceptance

ratio.

5.4.3 Conclusion

When the routing updates are synchronized with the aggregation event, we expect

the newly flushed route cache to have routes that are based on latest aggregated
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information. Hence the call acceptance increases in comparison to when cache

refresh rates are mis-matched with the default aggregation rate.

An improvement in the average call acceptance ratio with a corresponding

decrease in the average call setup time, as compared to the other cache update

heuristics, show that the ptse count - crankback initiated invalidation method is a bet-

ter heuristic for determining when to update the route cache. This is because the

PTSE count is a good measure of network flux for initiating route cache updates,

while the crankback initiated invalidation helps to keep the route cache up to date.

5.5 Multiple Peer Group with Route Cache Updates
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Figure 5.18: Average Setup Time with Peer Group Size (ptse count - crankback
update heuristic)

On the basis of our conclusion, we re-evaluate the experiments of varying

multiple peer group size (see Section 5.3.1). But this time, we include the ptse count
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Figure 5.19: Average Bandwidth Acceptance with Peer Group Size (ptse count -
crankback update heuristic)

with crankback initiated invalidation cache update policy along with re-aggregation.

Figure 5.18 shows that the average call setup time has decreased for Pre-Computed

routing strategy with route cache updates. However, Figure 5.19 shows that there

is a also an increase in the average bandwidth acceptance ratio. Without updates,

the average call setup time is only slightly different from the value with cache

updates. Also, when cache updates are introduced, the call acceptance is increased

to reach values that are close to those for on-demand computation.

This is primarily due to the increase in the number of calls succeeding in

foreign peer groups. As is seen in Figure 5.20, without cache updates, the location

of failures is primarily in the foreign peer groups. However, when ptse count with

crankback initiated invalidation heuristic is applied for route cache updates, Figure

5.21 shows that the failures in foreign nodes drastically decreases.

Thus the use of the ptse count with crankback initiated invalidation heuristic
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Figure 5.20: Location of Call Failures for Pre-Computed Routing (without cache
updates) with Peer Group Size
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Figure 5.21: Location of Call Failures for Pre-Computed Routing (ptse count -
crankback update heuristic) with Peer Group Size
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brings out the advantage of avoiding foreign peer group failures, and the accom-

panying lowering of total signalling load.

The improvement in terms of lowering average call setup time is best rep-

resented by using a histogram of route computation times. We consider the case of

a 2 level multiple peer group topology, having 5 peer groups at the physical level.

Figure 5.22 shows the histogram for on-demand route processing times.

It is seen that there are three peaks corresponding to the following routing

decisions:

� lower region peak: this represents the route computation for destinations

within the source peer group, or at the terminating peer group.

� middle region peak: this represents the route computation for transit routing

occurring at an ingress border node for getting the call across the peer group.

� higher region peak: this represents the high source route computation in-

volving extraction of the entire topology database and routing across foreign

peer groups.

Pre-computation involves a search through a list of route entries in the route

cache. If there is a miss, an on-demand route computation is carried out. Figure

5.23, shows how the histogram shifts when on-demand routing strategy is replaced

with pre-computed routing strategy. The same number of calls are made in both

cases. However, with pre-computation, the majority of calls are in the lower end

of the histogram, corresponding to the cache hits. The components corresponding

to cache misses occur for terminating peer group routing, transit peer group rout-

ing, and source node routing. The cache misses are followed by on-demand route

computation. These are indicated in the histogram.
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5.5.1 Other MPG Topologies

We also looked at other non Edge-Core topologies to verify that the crankback - ptse

count heuristic is not dependent on a specific network topology. Experiments were

carried out on:

� 3 level Multiple Peer Group network.

� Cluster network containing 8 nodes per cluster, and 5 such clusters.

� 60 node network divided into 5 peer groups (not conforming to edge core

topology).

In all cases, there was an improvement in call setup time with a correspond-

ing increase in the call acceptance was observed for pre-computed route caching

strategy with the crankback - ptse count update heuristic. This was in comparison

to pre-computed route caching without updates. Also, the performance of pre-

computed routing with crankback - ptse count update heuristic was close to that

of on-demand routing strategy. This is consistent with the results obtained with

Edge-Core topology.
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Chapter 6

Conclusions and Future Work

Thus grew the tale of Wonderland:

Thus slowly, one by one,

Its quaint events were hammered out -

And now the tale is done,

(but then.. research never ends..)

Routing decisions within the PNNI protocol involves topology database queries

and expensive graph manipulations, for each incoming call connection request re-

quiring route computation. The research presented in this thesis looks at how to

amortize the cost of route computation across several such call requests. We sug-

gest pre-computation of routes that are stored in a route cache for future lookup and

routing.

Route caching decreases the cost of route computation, and thus decreases

the average call setup times. However, this comes at the price of decreased call

acceptance, due to the fact that pre-computation uses topology state information

that will age by the time the actual call request arrives.

As such, our cache model is relatively simple. Since we wish to illustrate the

advantages of route caching over on-demand computations, we use the identical

routing algorithm, and minimally change the basic routing methodology. We com-
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pute routes to destination nodes present in a node’s topology database. Routes are

computed on the basis of a set of equivalence classes of bandwidth available in the

network. This is done so as to be able to map the bandwidth requirements of the ar-

riving call to the best pre-computed route. Our pre-computed route caching mod-

el conducts re-computation of routes so as to update the route cache and increase

the average call success. We studied different route cache update heuristics and

compared their effectiveness in achieving an optimum combination of decreased

average call setup times and increased average call success.

We proposed the ptse count method for determining when a cache update

needs to be initiated. This method relies on counting the number of PNNI Topolo-

gy State Elements (PTSE) that are flooded among all nodes within the network, as

part of the PNNI protocol. Our solution is based on the fact that since PTSEs are

generated by a node because of significant change in its resource availability. The

number of PTSEs is a good indicator of network flux. This is better than say, a timer

based heuristic that forces route computation periodically irrespective of whether

the network state has changed or not. While we saw that the timer based heuris-

tic performs best, when the update period is synchronized with the topology re-

aggregation period, we also found that the use of a timer does not follow network

state changes as well as the ptse count method. We conclude that the crankback initi-

ated invalidation of cache entries, enhanced by ptse count based cache updates gives

the best combination of decreased average call setup time and increased average

call success. The results of our experiments showed that a pre-computed route

caching scheme using this combined heuristic achieves performance comparable

to on-demand computation of routes.

Our simulation platform, the KU-PNNI Simulator, shares more than 90% of

its code with real off-board Q.Port signalling code. This makes it a good platform

for simulating large ATM networks, especially those running a complex routing

protocol like PNNI. The results obtained were statistically tested for data integrity
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and consistency. We find that for call setup time, call acceptance ratio and call

bandwidth acceptance, the values passed the data integrity test at a confidence

level of 95% with the samples lying on average within 2% of the population mean.

The ptse count with crankback invalidation heuristic was tested under three

different network topologies, and the results validated our hypothesis in every

case. Finally, our overly pessimistic traffic load model, and the simple structure of

our route caching policy indicate that for a real world network, having a smarter

route caching method, the results would tend to be even more favorable for pre-

computed route caching, as compared to on-demand computation of routes.

For future work, the route cache policy can be enhanced in several areas

including: route pre-computation, more efficient storage of routes, verification of

a chosen cache entry before it is used for connection establishment, introducing

crankback retries and alternate routing. The route computation cost model is over-

ly pessimistic and can be improved to include a more realistic representation of

background computation.

Our results indicate that route caching is far better at choosing routes within

the source peer group, as compared to foreign peer groups. This suggests a hybrid

routing algorithm that does on-demand computations for determining the foreign

peer groups to traverse in a route, and then consults a route cache for crossing the

source peer group to reach the border node to the first foreign peer group.

Our experiments show that the ptse count method is a good estimate for

network flux. While we use this as an indication to update a pre-computed route

cache, it would not be difficult to apply this to say, the problem of when to re-

aggregate logical level topology state information within peer group leaders. As

the PNNI protocol improves to encompass inter-networking issues, the use of the

ptse count method for interacting with IP based routing protocols like OSPF, BGP

and so on, may be prospective areas for investigation.
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